## Exam-GK-MCQ-Questions.Com

Home - Quantitative Aptitude - Trigonometry MCQs

# Trigonometry MCQs Online Exam Quiz

Important questions about Trigonometry MCQs. Trigonometry MCQs MCQ questions with answers. Trigonometry MCQs exam questions and answers for students and interviews.

### For Cosine Rule of any triangle ABC, bÂ² is equal to

Options

A : aÂ²Â - cÂ²Â 4bc cos A

B : aÂ²Â + cÂ²Â - 2ac cosÂ B

C : aÂ²Â - cÂ²Â + 2ab cosÂ A

D : aÂ²Â + cÂ²Â - 2ac cosÂ B

### For Cosine Rule of any triangle ABC, cÂ² is equal to

Options

A : aÂ²Â - bÂ²Â + 2ab sinÂ A

B : aÂ²Â + bÂ²Â + 2ab cosÂ A

C : aÂ²Â + bÂ²Â - 2ab cosÂ C

D : aÂ²Â + bÂ²Â - 2ab cosÂ C

Options

A : 60Â°

B : 63Â°

C : 66Â°

D : 66Â°

### Considering Cosine Rule of any triangle ABC, possible measures of angle A includes

Options

A : angle A is acute

B : angle A is obtuse

C : angle A is right-angle

D : all of above

### Sine rule for a triangle states that

Options

A : a/sin A = b/sin B = c/sin C

B : sin A/a = sin B/b = sin C/c

C : a/sin A + b/sin B + c/sin C

D : sin A/a = sin B/b = sin C/c

### Dimensions of plane includes

Options

A : length only

C : depth and length

### By expressing sin 170Â° in terms of trigonometrical ratios, answer will be

Options

A : sin 10Â° = 0.1631

B : sin 10Â° = 0.1736

C : sin 10Â° = 0.3761

D : sin 10Â° = 0.1736

### By expressing sin 125Â° in terms of trigonometrical ratios, answer will be

Options

A : sin 55Â° = 0.8192

B : sin 65Â° = 0.9128

C : sin 70Â° = 0.5384

D : sin 55Â° = 0.8192

### By expressing cos 113Â° in terms of trigonometrical ratios, answer will be

Options

A : âˆ’ cos 62Â° = -0.8520

B : âˆ’ cos 65Â° = -0.4258

C : âˆ’ cos 67Â° = -0.3907

D : âˆ’ cos 67Â° = -0.3907

### For Cosine Rule of any triangle ABC, aÂ² is equal to

Options

A : bÂ²Â + aÂ²Â - 2ac cosÂ A

B : bÂ²Â + cÂ²Â - 2bc cosÂ A

C : bÂ²Â - cÂ²Â + 3bc cosÂ C

D : bÂ²Â + cÂ²Â - 2bc cosÂ A

### Cosine Rule is also known as

Options

A : Cosine Area

B : Sine triangle

C : Cosine Triangle

D : Cosine Formula

### Considering 0Â° < x < 180Â°, angle of sin x = 0.2385 is

Options

A : 13.80Â° , 166.20Â°

B : 14Â° , 150Â°

C : 18.02Â° , 165.02Â°

D : 13.80Â° , 166.20Â°

### Formula for area of a triangle ABC is

Options

A : 2ab sin C = 2bc sin A = 2ac sin B

B : 3/2ab sin C = 3/2bc sin A = 3/2ac sin B

C : 1/2ab sin C + 1/2bc sin A + 1/2ac sin B

D : 1/2ab sin C = 1/2bc sin A = 1/2ac sin B

### Considering Cosine rule, cos C is equal to

Options

A : a² - b² - c²⁄2bc

B : a² + b² - c²⁄2ab

C : 2a + 2b - 2c⁄2ac

D : a² + b² - c²⁄2ab

Options

A : 0.8

B : 2.4

C : 2.8

D : 2.4

Options

A : zero

B : one

C : infinite

D : one

Options

A : 36.87°

B : 45°

C : 47.23°

D : 36.87°

### For any acute angle, sine A is equal to

Options

A : sin (90° - A)

B : sin (180° - A)

C : sin (180° + A)

D : sin (180° - A)

Options

A : normal

B : angular

C : triangular

D : normal

Options

A : cos A

B : cos C

C : cos B

D : cos B