Home - Quantitative Aptitude - Trigonometry MCQs

Trigonometry MCQs Online Exam Quiz

Important questions about Trigonometry MCQs. Trigonometry MCQs MCQ questions with answers. Trigonometry MCQs exam questions and answers for students and interviews.

For Cosine Rule of any triangle ABC, b² is equal to

Options

A : a² - c² 4bc cos A

B : a² + c² - 2ac cos B

C : a² - c² + 2ab cos A

D : a² + c² - 2ac cos B

For Cosine Rule of any triangle ABC, c² is equal to

Options

A : a² - b² + 2ab sin A

B : a² + b² + 2ab cos A

C : a² + b² - 2ab cos C

D : a² + b² - 2ab cos C

In a triangle ABC, if angle A = 72° , angle B = 48° and c = 9 cm then Ĉ is

Options

A : 60°

B : 63°

C : 66°

D : 66°

Considering Cosine Rule of any triangle ABC, possible measures of angle A includes

Options

A : angle A is acute

B : angle A is obtuse

C : angle A is right-angle

D : all of above

Sine rule for a triangle states that

Options

A : a/sin A = b/sin B = c/sin C

B : sin A/a = sin B/b = sin C/c

C : a/sin A + b/sin B + c/sin C

D : sin A/a = sin B/b = sin C/c

Dimensions of plane includes

Options

A : length only

B : breadth only

C : depth and length

D : breadth and length

By expressing sin 170° in terms of trigonometrical ratios, answer will be

Options

A : sin 10° = 0.1631

B : sin 10° = 0.1736

C : sin 10° = 0.3761

D : sin 10° = 0.1736

By expressing sin 125° in terms of trigonometrical ratios, answer will be

Options

A : sin 55° = 0.8192

B : sin 65° = 0.9128

C : sin 70° = 0.5384

D : sin 55° = 0.8192

By expressing cos 113° in terms of trigonometrical ratios, answer will be

Options

A : − cos 62° = -0.8520

B : − cos 65° = -0.4258

C : − cos 67° = -0.3907

D : − cos 67° = -0.3907

For Cosine Rule of any triangle ABC, a² is equal to

Options

A : b² + a² - 2ac cos A

B : b² + c² - 2bc cos A

C : b² - c² + 3bc cos C

D : b² + c² - 2bc cos A

Cosine Rule is also known as

Options

A : Cosine Area

B : Sine triangle

C : Cosine Triangle

D : Cosine Formula

Considering 0° < x < 180°, angle of sin x = 0.2385 is

Options

A : 13.80° , 166.20°

B : 14° , 150°

C : 18.02° , 165.02°

D : 13.80° , 166.20°

Formula for area of a triangle ABC is

Options

A : 2ab sin C = 2bc sin A = 2ac sin B

B : 3/2ab sin C = 3/2bc sin A = 3/2ac sin B

C : 1/2ab sin C + 1/2bc sin A + 1/2ac sin B

D : 1/2ab sin C = 1/2bc sin A = 1/2ac sin B

Considering Cosine rule, cos C is equal to

Options

A : a² - b² - c²⁄2bc

B : a² + b² - c²⁄2ab

C : 2a + 2b - 2c⁄2ac

D : a² + b² - c²⁄2ab

If cos 55° and sin 55° = 0.8 each then answer of cos 125° + 5 sin 55° is

Options

A : 0.8

B : 2.4

C : 2.8

D : 2.4

Number of dimensions a line can have is

Options

A : zero

B : one

C : infinite

D : one

If cosine is 0.8 then value of acute angle is

Options

A : 36.87°

B : 45°

C : 47.23°

D : 36.87°

For any acute angle, sine A is equal to

Options

A : sin (90° - A)

B : sin (180° - A)

C : sin (180° + A)

D : sin (180° - A)

Line which is perpendicular to line passing through intersection point is called

Options

A : normal

B : angular

C : triangular

D : normal

Considering Cosine rule, a² + c² - b²⁄2ac is equal to

Options

A : cos A

B : cos C

C : cos B

D : cos B

Quantitative Aptitude more Online Exam Quiz

Copyright © 2021
Exam-GK-MCQ-Questions.Com | Contact Us | Privacy Policy | Terms of Use | Sitemap | 0.028127908706665