## Exam-GK-MCQ-Questions.Com

Home - Gate Computer Science - Practice Questions - Engineering Maths - Combinatories

# Engineering Maths - Combinatories Online Exam Quiz

Important questions about Engineering Maths - Combinatories. Engineering Maths - Combinatories MCQ questions with answers. Engineering Maths - Combinatories exam questions and answers for students and interviews.

Options

A : 120

B : 240

C : 720

D : 6

Options

A : 720

B : 60

C : 120

D : 360

Options

A : 15600

B : 15400

C : 15200

D : 15000

Options

A : 10

B : 12

C : 14

D : 24

Options

A : 12

B : 48

C : 144

D : 264

### 7. The number of diagonals that can be drawn by joining the vertices of an octagon is

Options

A : 28

B : 48

C : 20

D : None of these

Options

A : 16 C 11

B : 16 C 5

C : 16 C 9

D : 20 C 9

### 9. How many 10 digits numbers can be written by using the digits 1 and 2 ?

Options

A : 10 C 1 + 9 C 2

B : 2 10

C : 10 C 2

D : 10!

Options

A : 11

B : 12

C : 27

D : 63

### 11. In how many ways can 5 red and 4 white balls be drawn from a hag containing 10 red and 8 white balls ?

Options

A : 8 C 5 x 10 C 4

B : 10 C 5 x 8 C 4

C : 18 C 9

D : None of these

### 12. Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to

Options

A : 3600

B : 120

C : 7200

D : None of these

Options

A : 6

B : 20

C : 60

D : 120

Options

A : 1024

B : 625

C : 120

D : 600

Options

A : 216

B : 240

C : 600

D : 3125

### 16. The number of words from the letters of the word `BHARAT' in which B and H will never come together, is

Options

A : 360

B : 240

C : 120

D : none of these

Options

A : 1958

B : 1956

C : 16

D : 64

### 18. Ten different letters of an alphabet are given. Words with five letters are formed from these given letters. Then the number of words which have at least one letter repeated is

Options

A : 69760

B : 302040

C : 99748

D : None of these

Options

A : 220

B : 204

C : 205

D : 195

Options

A : 4

B : 5

C : 20

D : 30

### 21. There are (n + 1) white and (n + 1) black balls each set numbered 1 to n + 1. The number of ways in which the balls can be arranged in a row so that adjacent balls are of diferent colours, is

Options

A : (2n+2) !

B : (2n+2) ! x 2

C : (n+1) ! x 2

D : 2[(n+1) ! ] 2